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Summary. A general direct selected configuration interaction algorithm has been 
implemented and coupled to the second-order multireference many-body pertur- 
bafion theory CIPSI algorithm. The new direct selected CI code is highly 
vectorizable and able to handle any list of determinants selected to describe a 
given electronic state of any spin multiplicity. In the present work selection of 
deterrninants has been carried out through the CIPSI algorithm but this is not a 
constraint of the direct selected CI code. The largest case treated so rar involves 
a CI expansion containing 215 260 determinants selected from single and double 
excitations from 371 references. In this case there were 8 active electrons in 28 
molecular orbitals for NH 3 in a DZP basis set. The direct selected CI calculation 
needs only 14Mb of central storage (for the 215 260 determinants case) and 
takes 406 seconds per iteration on an IBM 3090/600J with vector facility. 
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1 Introduction 

Multireference Configuration Interaction methods (MRCI) nowadays belong to 
the most reliable quantum-chemical methods used to study ground and excited 
electronic states of molecular systems [1]. Although MRCI methods have been 
used for about twenty years [2, 3], it has not been possible to include all single 
and double excitations relative to the reference space except for rather small 
cases. To overcome the difficulty posed by the very large dimensions of the 
MRCI expansion, very efficient algorithms have been designed and implemented 
very recently [see Ref. [4] and references therein]. These algorithms are generally 
based on direct CI procedures [5-22] and also on the use of either externally and 
internally contracted CI techniques [23-25]. In the contracted CI techniques the 
number of variational parameters is largely reduced and the contraction co- 
efficients are obtained by first-order perturbation theory. 

An alternative approach would come from the fact that of the generated 
single and double excitations only a few have a noticeable contribution to the 
wavefunction. It will be enough to treat variationally the important generated 
configurations (or determinants) and use perturbation theory to have an estimate 
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of the energy contribution of those generated terms not included into the 
variational MRCI. This is precisely the philosophy of CIPSI algorithm [26] in its 
three-class version [27]. In fact, a very recent study [28] has revealed that 
inclusion of about 1% of the total MRCI expansion in the variational (interme- 
diate) class is enough to have meaningful results. Moreover, it has been proven 
that the second-order energy estimate of the contribution of those determinants 
of the MRCI expansion not included into the variational space is, for a series of 
test calculations, smaller than the error with respect to the exact FCI solution. A 
similar conclusion can be extracted from the results obtained through the 
internally contracted MRCI method [4]. 

For a large variety of chemical applications [29-41] it is usually enough to 
include 5000-10 000 determinants in the variational MRCI, i.e. in the intermedi- 
ate class if using the CIPSI algorithm, to have results which will differ less than 
1 mh from the full variational MRCI result. However, for transition-metal 
dimers or oxides a large increase of the intermediate space dimension is necessary 
to have results near the variational MRCI one [42]. Following the above ideas it 
is expected that inclusion of around 200 000 determinants in the intermediate 
space of a CIPSI calculation has to provide results with almost negligible errors 
with respect to the full variational MRCI. The bottle-neck of a three-class CIPSI 
calculation lies on the evaluation and storage of the CI matrix H in the basis set 
of the determinants belonging to this intermediate space. For this reason the 
dimension of the intermediate space cannot exceed 50 000 if the standard version 
of the CIPSI package is used [43], and a direct CI approach is needed. 

Here we will present a general direct selected CI code that can handle any 
kind of MRCI expansion. This code has then been coupled to the CIPSI package 
which is the algorithm used to select both, the reference and the intermediate 
spaces, and also to compute the second-order energy contribution of those terms 
of the MRCI expansion not included in the variational space. The performance 
of such a code will be shown by comparison to selected FCI calculations. An 
analysis of the computer time spent at each step of the calculation will also be 
presented. 

2 The direct-CI algorithm 

The goal of a direct-CI procedure is to solve the matrix equation: 

Hci = Eici (1) 

without explicitly computing and storing the H matrix (the matrix representation 
for the non-relativistic electronic hamiltonian in the basis set of the Slater 
determinants). 

As is weil known, the solution of Eq. (1) may be obtained iteratively by the 
procedure suggested by Davidson [44]. Starting from a normalized trial vector 
c «~), the residual vector a(~) is computed as: 

«~~ = Z r* , ,4  "~ (2) 
J 

and the energy for the n iteration is simply: 

E (n» = Œ(n)c(n) (3) 

In the above procedure the most time-consuming step is the evaluation of the 
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residual vector a (n) and many efficient ways of computing it have been proposed 
in the last years, especially for certain kinds of CI spaces having a very compact 
structure as CAS (Complete Active Space), RAS (Restricted Active Space), and 
FCI (Full Configuration Interaction) spaces [see [1,45-48] and references 
therein]. 

Following the ideas already reported in those previous works, we have 
developed a new direct selected CI code having the following main features: 

(i) Use of Slater determinants as a basis of n-electron functions. These determi- 
nants are written as products of «- and fl-strings. 

(ii) Neither the reference space nor the MRSDCI space have a defined structure. 

(iii) The electronic hamiltonian has been written, as usual, using modified 
bielectronic integrals. 

(iv) The product of generators of the unitary group has been decomposed into 
their c~ and fl components leading to an expansion for the residual vector 
containing three different contributions: ««, flfl, and «fl biexcitations (vide infra). 

(v) The number of interrnediate states appearing in the «« and flfl contributions 
to the residual vector has been reduced by using the anticommutation properties 
of the quasi-particle creation and annihilation operators. 

(vi) The list of determinants entering on the summation of Eq. (2) has been 
ordered and addressed in order to allow some vectorization in this disordered 
space. 

Because of the incompleteness of the selected CI spaces we are interested in, 
our code is not fully vectorizable. However, the ordering and addressing carried 
out enables a maximization of the possible vectorization. 

The residual vector takes the form: 

«(Ic, b )  = «, (I«, iß) + «2(L, b )  + «3(L, b)  (4) 

where I c and Iß are the corresponding «- and fl-strings. If  {CI} is the subset of 
Slater determinants contained in the selected CI expansion, {I« } is the set of the 
«-strings appearing in {CI} and {Iß } the analogous of {I« } for the fl-strings. The 
explicit formulae for the three contributions to a are: 

- 2 ,<kj<,Z Z (Je Ji+k+j«l« JI« >[(/j ] k l ) " -  (iz I kj)"]] 

vz~ ~ {iù }f lJ«:  > ~ {ci} and lidù > ~ {cI} <5) 

«~(L, b) = y~ «:«, :ù) [z, <.,ùli;~ùl,ù> y~ <« I:)" 

- 2 ,<k;<,2 Z <Je liß k;jflô Jle >[(/j J kl)" - (il J kj)"]] 

v/«~{:«}/JUp>~{c:} and IiJ,,}~{c:} f6) 
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a~(Ic, I,)=E E <s,[i:j«li» 
ij J« ~ (te} 

x E c(J«,JP) 2 (J, Lk~l, lb>(ijlkO " 
J8 s {ca} kl 

Jfl/IJ'ŒJfl) "~ {CI} 
I Ja J , )  ~ {CI} and liftù) E {CI} (7) 

where the (/j ]kl)" symbol stands for the modified bielectronic integrals. 
The constraints on the summation also produce a decrease on the vectoriza- 

tion capability of the algorithm. Fortunately, some of the queries needed to 
assure that the above restrictions hold have been avoided by the use of the 
addressing lists. Of course, this addressing scheine is not necessary when the CI 
space has a defined structure; this is because in an FCI space, for instance, each 
«-string appears with each fi-string and vice versa. Moreover, the address of each 
of those strings is quite obvious. In a selected CI space without any defined 
structure it is necessary to use some auxiliary vectors containing information 
about the position of the «- or fl-strings appearing with a given fl- or «-string in 
the {CI}. The detailed description of these vectors is given in the next section. 

There is a particular case which merits an additional comment. For an even 
number of electrons and regardless the spin multiplicity of the electronic state 
considered there is always a component having a zero value for the z component 
of the spin angular momentum operator (i.e. S~ = 0). In this case it has been 
shown [45] that: 

az(Ic, I~) = ( - 1)sa,(I,, Ic) (8) 

with S being related to the spin multiplicity given by 2S + 1. Then, a 2 is directly 
obtained from a~. On the other hand, there is a relationship between some 
elements of a3, namely: elements of a3, namely: 

G i j k l ( l  
3 \ ' c ,  I,)  = ( - 1)sa3kt'J(b, I«) (9) 

In this particular case, the use of Eqs. (8) and (9) allows a considerable time 
saving of the computation of the residual vector a. 

3 Description of the string and auxiliary lists 

Once the list of determinants included in the {CI} space has been obtained from 
a selection procedure, a translation to c- and fl-strings is carried out and these 
strings are sequentially stored in two integer vectors LISTA and LISTB of 
dimension the number of determinants included in the {CI} subset. Optionally, 
if the address of any string cannot be stored in an integer, these two vectors taust 
be declared as REAL*8. Two different versions of the code have been written 
accordingly. Next step is the ordering of Œ-strings in increasing order and, for a 
given «-string, we order the corresponding fl-strings in the same way. 

Three auxiliary vectors are now constructed from the ordered LISTA and 
LISTB. These vectors (IALFA, IALBE, and IALDIR) have the dimension of the 
maximum of {I« } and {Iß }. The IALFA vector contains the list of «-strings 
contained in {I c } and IALBE the number of fl-strings appearing with each 
«-string. Finally, IALDIR contains the entry of each Œ-string in LISTA. Since 
equations giving the al and a: components are formally identical except by a 
transposition of the e array appearing in Eqs. (5) and (6), an analogous ordering 
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of LISTA and LISTB starting by the fl-strings is needed to efficiently compute 
a2. Likewise, a new set of IALFA, IALBE, and IALDIR is constructed and 
stored on the previous ortes provided al has already been computed. 

It is very useful to introduce another auxiliary integer vector, LA UX, of 
dimension the number of determinants included in the {CI} space. This vector 
contains the position of a given fl-string of LISTB, when LISTB has been 
firstly ordered by {I« }, in the IALFA vector, when it has been constructed from 
LISTB vector firstly ordered following {Ia }. 

In the special case of Sz = 0, it is convenient to introduce another list, 
LTRA, that for a given determinant written as II«I~ } contains the position of 
the 1I~I« } determinant. This is because, in this case, the LISTA and LISTB are 
identical except for the ordering of their elements. It is clear that, in this case, it 
is only necessary to explicitly store LAUX and LTRA and not LISTA and 
LISTB. 

It should be noted that the ordering and addressing described in this section 
is what permits a substantial vectorization of the algorithm that otherwise will 
not be possible in a general CI space without a defined structure. In other 
words, the strategy here presented allows to mimic as rauch as possible the 
vectorization scheme already present in the FCI or RAS algorithms of  Olsen et 
al. [45]. As it has been already pointed out in Rel. [46], non-degenerate point 
group symmetries are easily incorporated into this address scheine by the use of 
index vectors for string addresses. 

4 The selection procedure 

In the present work we have used the CIPSI algorithm [26] to select both the 
reference and the subset of the MRCI space to be variationally treated. Techni- 
cally, this is done using the three-class version of the CIPSI algorithm [27]. 

Starting from the Hart ree-Fock determinant (or the adequate combination 
for the desired electronic state) all the single and double excitations are gener- 
ated. Those having a contribution to the first-order wavefunction greater than a 
certain first threshold t/ are included into the reference space {G} which is 
iteratively improved. When the reference space is large enough (of the com- 
puter small enough) a second selection is carried out on the space of generated 
determinants (i.e., the MRSDCI space, {GD}). This second selection is also 
carried out according to a predefined threshold, z, as when selecting the 
reference space. For a recent review see Ref. [28]. 

The use of CIPSI has an additional advantage, namely the second-order 
energy contribution of those determinants of the MRCI expansion not inclu- 
ded into the variational space {M} is directly obtained and may be a useful 
guide to know whether the variational space is or is not large enough; it 
provides a measure of how far a truncated variational space is from the full 
MRCI one. Hence, for a given electronic stare m, the total energy may be 
written as: 

E~ - - E ~ +  ~ E~ ~ (1 O) 

where Em v is the variational energy obtained by diagonalization of the CI 
matrix in the {G} + {M} = {C1} space and E~ ) is the perturbational second- 
order contribution of those determinants belonging to {GD} but not included 
in {M}. 
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5 Test calculations 

In order to test the performance of the present selected direct-CI algorithm, three 
different numerical tests have been carried out. The first one is for the HF 
molecule using a Van Duijnevelt basis set consisting of 4s3pld contracted 
functions for F and 2s lp for H. This first example will allow us to compare full 
variational MR(SD)CI with the FCI value reported in [28]. This point is 
important because it will show the efficiency of the selection procedure and the 
convergence of the selected MRCI as a function of the reference space. The FCI 
is in this case about 13 million determinants in C» symmetry. 

The second example is the one reported by Knowles and Handy [49] for N H  3 

using a 3s2pld ANO (Atomic Natural Orbital) contraction of the 13s8pld 
primitive set for N and a 2s lp ANO contraction of 8s lp primitive set for H. 
Atomic coordinates, gaussian exponents, and contraction coefficients have been 
taken from [49]. We will use this second example to perform an analysis of 
timing and vectorization efficiency as weil as to analyze the convergence of CIPSI 
energies towards the FCI value reported in [49]. It is worth recalling that FCI for 
N H  3 in this basis set involves about 209 million determinants in Cs symmetry. In 
these two examples the ls electrons of F and N, respectively, were not correlated 
and have been frozen at the SCF level. The SCF orbitals have been always used 
to construct the Slater determinants used as the n-electron basis in the present 
MRCI calculations. 

Finally, we will present results for N2 as a real albeit small case. Calculations 
for N2 have been carried out at 2.1 a.u. for the internuclear distance and use 
nonempirical pseudopotentials to describe the ls cores. The primitive basis set 
contains 7s7p2dlf functions contracted to 3s3p2dlf functions. The MRCI 
expansion has to handle 10 active electrons in 58 orbitals. An FCI for this 
molecule will involve about 10 ~° determinants. Starting orbitals for this calcula- 
tion are also the SCF ones. Further details about this calculation are reported in 
Refs. [50, 51]. 

6 Results and discussion 

In Table 1 we report results for HF using four different selected reference spaces 
including up to 388 determinants. In this case we have been able to treat 
variationally the full MRCI expansion. Hence, the selection criterion only applies 

Table 1. Summary of  results for H F  including the dimension of 
the {G}, {M} and {GD} subspaces, the variational M R CI  energy, 
EMRC~, and the error with respect to the FCI energy, AE. Energies 
are in atomic units 

dim dim EMacl dE 
{G) {GD} 

113 81868 - 100.272466 
194 125016 - 100.272912 
278 159009 - 100.273067 
388 191984 - 100.273068 
FCI [28] 1.3 × 107 - -  100.274107 

0.001641 
0.001195 
0.001040 
0.001039 
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to the choice of the reference space. It is remarkable that by using only a small 
number of selected references the MRCI energy only differs 1 mh from the FCI 
value. Of course, the basis set used for this molecule is quite limited and from 
this result alone it cannot be deduced that for the largest cases the behavior will 
be similar, too. The important point is, however, the ability of the selected 
MRCI procedure to converge rather weil to the exact FCI result. 

The same situation is observed for the NH 3 test. In Table 2 we report results 
for five different reference spaces and, for each of these spaces, the result 
obtained by truncating the MRCI according to the second threshold z. In some 
cases, the number of generated determinants to be included in the full variational 
space is fairly large and it is interesting to explore the convergence of the energy 
obtained by applying Eq. (10). This will give an idea of how good the second- 
order energy contribution of those generated determinants not included in the 
variational space is. From the test calculations reported in Table 2 it is clear that, 
once the most important ( ~ 5  × 104) determinants have been included in the 
variational space, the resulting energy is quite stable and it can only be lowered 
by increasing the reference space. As in the cases reported in [28] the second- 
order energy contribution is one order of magnitude smaller than the error in 
respect to the FCI. This would suggest that it is more important to have a large 
enough reference space than a full variational MRCI result on a smaller 
reference space, even if in the latter part of the correlation energy has to be 

Table 2. Summary of results for NH 3 as a function of the number of reference determinants (dim{G}), 
and for a given reference space as a function of the dimension of the variational space (dim{G + M}). 
The number of generated determinants are given by dim{GD}. The E v, E~ ) and En refer to the 
energies variational of {G + M}, pertubational of {GD - M} and total computed as the sum of both, 
respectively. AE stands for the error of E,~ with respect to the FCI value reported in [49] 

dim dim dim EVm E~ ) E,ù AE 
{G} {GD} {G + M} 

1 6444 6 4 4 5  -56.411048 0 . 0 0 0 0 0 0  -56.411048 0,0126 

41 170378 1 9 2 2 4  -56.417406 0 . 0 0 0 4 8 8  -56.417894 0.0057 
7 9 2 2 2  --56.419222 0 . 0 0 0 0 2 4  -56.419246 0.0044 
9 7 1 1 1  -56,419349 0 . 0 0 0 0 0 7  --56.419356 0.0043 

116697 -56.419461 0 . 0 0 0 0 0 1  -56.419462 0.0041 
170419  -56.419600 0 . 0 0 0 0 0 0  -56.419600 0.0040 

135 459522 2 4 7 6 7  --56.418279 0 . 0 0 0 9 0 7  -56.419186 0.0044 
5 7 0 ¤ 7  --56.419881 0 . 0 0 0 4 1 5  -56.420296 0.0033 
7 9 0 0 2  -56.420433 0 . 0 0 0 2 7 6  --56.420709 0.0029 
9 5 8 5 6  --56.420724 0 . 0 0 0 2 0 7  --56.420931 0.0027 

203671  -56.421643 0 . 0 0 0 0 3 4  -56.421677 0.0019 

257 715273 3 1 7 0 5  -56.418896 0 . 0 0 1 1 3 4  -56.420030 0.0036 
6 9 0 6 6  -56.420413 0 . 0 0 0 5 5 0  -56.420963 0.0026 
7 9 9 4 2  --56.420696 0 . 0 0 0 4 6 9  --56.421165 0.0024 
9 4 7 5 2  -56.421003 0 . 0 0 0 3 8 5  -56.421388 0.0022 

371 897411 3 6 7 9 7  --56.419299 0 . 0 0 1 3 1 8  -56.420617 0.0030 
5 1 4 7 0  --56.419907 0 . 0 0 0 9 7 6  --56.420883 0.0027 
8 0 5 3 9  -56.420796 0 . 0 0 0 6 1 9  -56.421415 0.0022 
9 1 7 8 9  -56.421032 0 . 0 0 0 5 3 5  -56.421567 0.0020 

107548 -56.421307 0 . 0 0 0 4 4 4  --56.421775 0.0018 
2 1 5 2 6 0  --56.422267 0 . 0 0 0 1 6 1  --56,422428 0.0012 
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recovered by perturbation theory. This result is in agreement with previous 
studies using smaller selected M R C I  expansion [28, 52] and will not be further 
commented on. 

We will now turn our attention to the analysis of  vectorization efficiency and 
computer time required to perform these selected direct CI calculations. With 
respect to the vectorization it has to be recalled that the larger the number of  
«-strings appearing with more than (let us say) 20 /~-strings, the larger the 
efficiency of the vectorial process is. These figures are reported in Table 3 where 
it is shown that for a given reference space, the number of  both, vectorizable and 
not vectorizable Œ-string operations, increase when increasing the dimension of  
the selected M R C I  expansion. An important  feature appearing from results in 
Table 3 is that the ratio between vectorizable and not vectorizable «-string 
operations increases when increasing the dimension of the reference space. 
However, when enlarging the reference space from 135 to 371 references this 
increment does not occur and it seems as if the new determinants in the selected 
M R C I  expansion are generated from the same set of  «- and/~-strings. 

With respect to the computer time requirements, results in Table 3 clearly 
indicate that the most  consuming step is ~3. In any case the present version of 
the code is able to compute an eigenvector of  the H matrix for a selected M R C I  
expansion of up to 215 260 determinants by using about  400 seconds per 
iteration on an IBM 3090/600 with vector facility but using only 14 Mb of 
central storage. 

We will now comment  some results obtained for N 2 using a contracted 
3s3p2dlf basis set in each N atom and pseudopotentials for the inner shell ls 
cores. I f  the reference space is iteratively constructed so as to include the most 
important  231 reference determinants starting from the SCF molecular orbitals, 
1 731 861 determinants are generated. I f  a value of 0.00005 is set up for the 
selection threshold the resulting selected M R C I  expansion contains 136339 
determinants. The number of  «-strings appearing in this set is 10 452 and the 
time per iteration is 367 and 692 seconds for aj and a3, respectively. Note  that 
«2 is not explicitly computed provided Sz = 0. The final energy is - 19.833135 a.u. 

Table 3. Timing and vectorization analysis for some selected MRCI calculations carried out for 
NH3. The first two columns contain the dimension of the reference and selected MRCI spaces 
(dito{G} and dim{G + M}, respectively). The third column gives the number of a-strings (N~«,}) 
appearing in each case and the 4 th and 5 th columns the number of ct-strings which appear with less 
than or more than 20 different fl-strings (N{~~} ~< 20; N{1«} > 20). Finally time (in seconds) per 
iteration spent in the evaluation of the a~, a 3 contributions to a and of the a itself is reported in the 
last three columns 

dim dim N(~} N(~} 420 N{~} > 20 tet te3 t« 
{G} {O + M} 

41 19224 1276 1031 245 17 26 43 
79222 2478 1818 660 41 91 132 
97111 2796 2035 761 50 115 165 

116697 3098 2255 843 57 145 202 
134469 3376 2526 850 66 174 240 
170419 4259 3399 860 93 248 341 

135 203671 5251 3752 1499 105 301 406 
371 215260 5193 3741 1452 103 315 418 
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with second-order energy contribution of -0.002527 a.u. The dissociation energy 
computed (with r = 2.1 a.u.) is 8.9 eV which is close to the value reported in [51] 
for a basis set of the same quality. Improvement of the starting orbitals through 
CASSCF or approximate Natural Orbital procedure will account for the small 
difference (5%) with respect to the value reported by Almlöf et al. [53]. 

Finally, using 64 Mb of central storage, we have been able to handle a selected 
MRCI expansion containing up to 600 000 deterrninants from a test calculation 
involving 16 electrons in 32 orbitals. The present version is still under development 
and a series of modifications to further decrease the computer time are currently 
being carried out [54]. 

7 Conclusions 

A new selected direct-CI scheine has been presented and implemented. The 
resulting code is general and can handle any spin multiplicity and, also, any MRCI 
space regardless of the selection procedure employed. Using only 14 Mb of central 
storage it is possible to carry out the diagonalization of a MRCI containing 
215 000 selected determinants. The algorithm exhibits a rather good vectorization 
capability and its performance with respect to computer time is reasonable. The 
present approach towards a selected direct-CI is by no means the only possible. 
In fact, recent work by Caballol and Malrieu using the hole-particle formalism 
permits to handle selected direct-CI calculations in a very efficient way [55]. 
Further test calculations are needed in order to assess which strategy is more 
convenient and to combine the different approaches in a general direct CI 
algorithm. 

The test calculations carried out up to now show that in principle it is possible 
to handle quite large selected MRCI expansions with a reasonable cost. A point 
to be stressed is that for a given MRSDCI space obtained from a reference set 
it seems sufficient to select around 10% of the total expansion to have meaningful 
results. This is specially true if perturbation theory is used to account for the 
contribution of those generated determinants in the MRSDCI expansion not 
included in the selected MRCI one. The whole procedure is specially well suited 
for calculations following the philosophy of the CIPSI algorithm. 
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